Pengertian
Identitas trigonometri adalah suatu persamaan yang memuat fungsi-fungsi trigonometri dan bernilai benar untuk setiap konstanta anggota domain fungsinya.
Rumus
\[sin^2x + cos^2 x = 1\]
\[sin^2x = 1-cos^2x\]
\[cos^2x = 1-sin^2x\]
\[tan \ x =\frac{sin \ x}{cos \ x}\]
\[cot \ x = \frac{cos \ x}{sin \ x}\]
\[sec \ x = \frac{1}{cos \ x}\]
\[cosec \ x = {1} + {sin} \ x\]
\[sec^2 \ x = tan^2 \ x +1\]
\[cosec^2 \ x = cot^2x + 1\]
\[cos (α + β) = cos \ α \cdot cos β – sin \ α \ sin \ β\]
\[cos (α – β) = cos \ α \cdot cos β + sin \ α \ sin \ β\]
\[sin (α + β) = sin \ α \cdot cos β + cos \ α \ sin \ β\]
\[sin (α – β) = sin \ α \cdot cos β – cos \ α \ sin \ β\]
\[tan (α + β) = \frac{tan \ α + tan β} {1- tan \ α \ tan \ β}\]
\[tan (α – β) = \frac{tan \ α + tan β} {1+ tan \ α \ tan \ β}\]
\[sin \ 2α = 2 \ sin \ α \ cos \ α\]
\[cos \ 2α = cos^2α – sin^2 \ α\]
\[\ \ \ \ \ = 2 \ cos^2α-1\]
\[\ \ \ \ \ = 1-2 \ sin^2α\]
\[sin \ 3α = 3 \ sin \ α – 4 \ sin^2 α\]
\[tan \ 2α = \frac{2 \ tan \ α}{1-tan^2α}\]
\[cos \ 3α = 4 \ cos^2 α – 3 \ cos α\]
\[sin \ α \ cos \ β= \frac{1}{2}{sin(α +β) + sin(α -β)}\]
\[cos \ α \ sin \ β= \frac{1}{2}{sin(α +β) – sin(α -β)}\]
\[cos \ α \ sin \ β= \frac{1}{2}{cos(α +β) + cos(α -β)}\]
\[sin \ α \ sin \ β= \frac{1}{2}{cos(α +β) – cos(α -β)}\]
Contoh
Sebuah segitiga ABC siku-siku di B. Panjang sisi tegak lurus BC = 5 cm, panjang alas AB = 12 cm, dan panjang sisi miring AC = 13 cm, Hitunglah nilai dari tan A!
\[sin \ A = \frac{sisi \ tegak \ lurus}{sisi \ miring}\]
\[sin \ A = \frac{5}{13}\]
\[cos \ A = \frac{alas}{sisi \ miring}\]
\[cos \ A = \frac{12}{13}\]
\[tan \ A =\frac{sin \ x}{cos \ x}\]
\[tan \ A =\frac{\frac{5}{13}}{\frac{12}{13}}\]
\[tan \ A = \frac{5}{13} \cdot \frac{13}{12}\]
\[tan \ A = \frac{5}{12}\]